ILLUSTRATIONS Section - 4

Illustration - 1 *Identify A, B, C, . . in the given reaction sequence.*

(a)
$$\xrightarrow{HBr} A \xrightarrow{1. Mg/ether} B \xrightarrow{Heat} C$$

$$\xrightarrow{1 \text{ mol}} A_{3}O^{+}$$

(b) Cyclopentanol
$$\xrightarrow{[O]}$$
 $A \xrightarrow{(i) \ CN^-}$ $B \xrightarrow{H^+}$ $A \xrightarrow{(i) \ H^+}$ $A \xrightarrow{(i) \ H^+}$

(c)
$$A \xleftarrow{\text{LIAIH}_4/\text{Einer}}_{\text{H}_2\text{O}} \leftarrow O \xrightarrow{\text{NABH}_4}_{\text{H}_2\text{O}} C$$

$$B \xleftarrow{\text{NaBH}_4}_{\text{H}_2\text{O}} \leftarrow O \xrightarrow{\text{MeOH}}_{\text{H}^+} D$$

SOLUTION:

(a)
$$\begin{array}{c}
HBr \\
\hline
1 \text{ mol} \\
(1, 4 \text{ addn.}) \\
H
\end{array}$$
(A)
$$\begin{array}{c}
Mg \\
Et_2O
\end{array}$$

$$\begin{array}{c}
COOH \quad 1. CO_2 \\
\hline
0 \quad A \quad CO_2
\end{array}$$
(is not formed)

(b) $\beta \quad A \quad CO_2$

(Observe the shift in the position of C = C bond)

$$(b) \bigcirc OH \xrightarrow{(O)} \bigcirc O \xrightarrow{1. CN^{-}} \bigcirc OH \xrightarrow{H^{+}} \bigcirc OH \xrightarrow{H^{+}} \bigcirc OH \xrightarrow{H^{+}} \bigcirc OH \xrightarrow{H^{+}} \bigcirc OH \xrightarrow{H_{3}O^{+}} \bigcirc OH \xrightarrow{(E)} \bigcirc OH$$

$$B \xrightarrow{H_2O} D(?)$$

$$\begin{array}{ccc}
OH & \xrightarrow{H_3O^+} & OH \\
COOH & (\alpha\text{-hydroxy acid})
\end{array}$$

LiAlH₄ reduces ester to alcohols. NaBH₄ reduces only aldehydes and ketones, but fails to reduce esters. C is formed via acyl-O cleavage by ammonia. D is formed via trans-esterification of lactone by methyl alcohol.

Illustration - 2 Identify A, B, C, ... in the given reaction sequence.

(a)
$$D \leftarrow \underbrace{(i) \quad NaOH(aq.)}_{(ii) \quad H^+} \quad C \leftarrow \underbrace{P/Br_2}_{excess \ hv} \quad CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{R} CH_3CHO \xrightarrow{dil. \ NaOH} B$$

(c)
$$C_6H_5COOCH_3 + C_2H_5COOCH_3 \xrightarrow{1. C_2H_5ONa} A \xrightarrow{H_3O^+} B + C ; B \xrightarrow{\Delta} D$$

SOLUTION:

(a)
$$CH_3COOH \xrightarrow{SOCl_2} CH_3 - C - Cl \xrightarrow{H_2-Pd} CH_3CHO \xrightarrow{dil. NaOH} CH_3CH = CHCHO$$
(Rosenmund Reaction) (Aldol condensation)

$$\begin{array}{c} CH_{3}COOH \xrightarrow{P/Br_{2}} Br_{3}C - COOH \xrightarrow{NaOH} \begin{array}{c} COOH \\ H^{+} \end{array} \\ \text{(HVZ reaction)} \end{array} \xrightarrow{(C)} \begin{array}{c} COOH \\ (D) \end{array} \end{array} \text{(hydrolysis of trihalides)}$$

(b)
$$COOH \xrightarrow{A} COOH COOH (E)$$
(A) $COOH COOH (E)$
(A) $COOH COOH (E)$
(Adipic acid)

Malonic acid on heating loses CO₂

(c)
$$C_6H_5COOCH_3 + CH_3CH - COOCH_3 \xrightarrow{1.C_2H_5ONa} A$$

H

This is an example of cross-Claisen condensation.

A is:
$$C_{6}H_{5} - C - CH - COOCH_{3} \xrightarrow{H_{3}O^{+}} C_{6}H_{5} - C - CH - COOH + CH_{3}OH$$

$$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{5} - C - CH_{2}CH_{3}$$

$$C_{6}H_{5} - C - CH_{2}CH_{3} \xrightarrow{C} CH_{5} - C - CH_{2}CH_{3}$$

$$CH_{3} \xrightarrow{C} CH_{5} - C - CH_{2}CH_{3}$$

β-keto acid loses CO₂ on heating.

Illustration - 3 Do the following conversion. (Try to minimize the steps involved)

- (i) 2-butanol to 2-methylbutanoic acid
- (ii) 2-chlorobutanoic acid to 3-chlorobutanoic acid

(iii) Benzene to adipic acid

- (iv) 2-propanol to 2-hydroxy-2-methyl propanoic acid
- (v) Toluene to 2-methyl-5-chlorobenzoic acid

SOLUTION:

$$(i) \quad \begin{array}{c} \text{OH} \\ | \\ \text{CH}_3\text{CH}_2\text{CH} - \text{CH}_3 \end{array} \longrightarrow \begin{array}{c} \text{CH}_3 - \text{CH}_2\text{CH} - \text{COOH} \\ | \\ \text{I. PCI}_5 \\ | \\ \text{2. Mg/Ether} \end{array}$$

$$\text{CH}_3 - \text{CH} - \text{CH} - \text{MgCl} \xrightarrow{\begin{array}{c} 1. \text{ CO}_2 \\ | \\ \text{CH}_3 \end{array}}$$

Alternate Method:

- (i) PCl₅
- (ii) alc. KCN
- (iii) H₃O⁺

(ii)
$$H_3C - H_2C - CHCOOH \longrightarrow H_3C - CH - CH_2 - COOH$$

$$Cl$$

$$Cl$$

$$EtO^-$$

$$EtOH (E2)$$

$$H_3C - CH = CH - COOH$$

$$\downarrow HCl$$

$$H_3C - CH - CH - COOH$$

$$\downarrow HCl$$

More stable carbocation (3 α -H)

$$\begin{array}{c} CH_{3}CH-CH_{3} & \longrightarrow & CH_{3} - \overset{CH_{3}}{\overset{|}{\leftarrow}} \\ OH & OH & OH \\ \downarrow H_{2}CrO_{4}/acetone \\ CH_{3}-C-CH_{3} & \xrightarrow{HCN} & CH_{3} & C & OH \\ \downarrow & & & & & \\ CH_{3}-C & CH_{3} & \xrightarrow{HCN} & CH_{3} & C & OH \\ \downarrow & & & & & \\ CH_{3}-C & CN & & & \\ \end{array}$$

- COOH is m-directing

IN-CHAPTER EXERCISE

Choose the correct alternative. Only one choice is correct. Questions marked with "" may have More than one correct options.

- 1. CH₃Br can be prepared by:
 - $CH_3COOAg + Br_2 \xrightarrow{\Delta}$ **(A)**
- $CH_3COOH \xrightarrow{P/Br_2} \xrightarrow{Soda lime, \Delta}$ **(B)**

(C) Both of (A) and (B) **(D)** None of these

- Acetyl chloride can react with: ***2.**
 - Water **(A)**
- **(B)** Sodium acetate (C)
- 2-methylpropene (D)
- Phenol
- Which of the following acids will undergo decarboxylation on heating? **3.**
 - I.
- Π.
- Ш.

- **(A)**
- **(B)** II, III
- **(C)** I, III
- **(D)** I, II, III
- An organic compound A on heating with ethanol gives compounds B and C, of which compound C is again a derivative of 4. the compound B. The compound A is:
 - CH₂COOH **(A)**
- (CH₂CO)₂O **(B)**
- **(C)** CH₂COOC₂H₅
- CH₃CH₂OH **(D)**

 $CH_{3} - CH_{2} - COOH \xrightarrow{HN_{3} + conc. H_{2}SO_{4} \atop \Delta} A$ $Br_{2}/P \atop \Delta B$ **5.**

A and B are:

- CH₃CH₂NH₂; CH₃CH(Br)COOH
- **(B)** CH₃CH₂CONH₂; CH₃CH₂COBr
- CH₂CH₂NH₂; CH₂CH₂COBr **(C)**
- **(D)** CH₂CH₂CH₂NH₂; CH₂CH₂CH₂Br
- $CH_3 \overset{"}{C} Cl + Nu^- \longrightarrow CH_3 \overset{"}{C} Nu + Cl^-$

Reactivity order of different nucleophiles (NH₂, CH₃COO⁻, OH⁻) is in order:

- $NH_2^- < CH_3COO^- < OH^-$ **(A)**
- **(B)** $CH_3COO^- < OH^- < NH_2^-$
- $NH_2^- < OH^- < CH_3COO^-$ **(C)**
- (D) $CH_3COO^- < NH_2^- < OH^-$
- О O O
- O O O $y \parallel$ $y \parallel$ Consider: $CH_3 C O CH_3$ and $CH_3 C O C CH_3$. If bond length 'x' in ester and 'y' in anhydride are 7. compared, then:
 - **(A)** x = y
- (B) x > y
- (C) x < y
- **(D)** None is true
- $\begin{array}{c} (i) \text{ CO, } \Delta \\ \hline \text{Pressure} \end{array} \rightarrow A \qquad CH_2 = CH_2 + CO + H_2O \xrightarrow{\quad H_3PO_4 \quad } B.$ CH₃CH₂ONa -8. (ii) H⁺

A and B are:

- (A) CH₃CH₂COOH in both cases
- **(B)** CH₃CH₂CHO in both cases
- **(C)** CH₂CH₂COOH, CH₃CHO
- CH₂CHO, CH₂COOH **(D)**

6.

12.

(C)

- ***9.** Which of the following compounds will liberate CO₂ from NaHCO₃?
 - $C_6H_5SO_3H$ **(A) (B)** C₆H₅CO₅H
- Benzoic acid is esterified with methyl alcohol labelled with ¹⁸O in the presence of dry HCl gas. After the reaction, labelled 10. oxygen will appear in:
 - **(A) (B) (C)** H_2O **(D)** All of these
- 11. t-Butyl acetate is hydrolyzed in the presence of an acid catalyst in water labelled with ¹⁸O. After the hydrolysis, the labelled oxygen will be present:
 - **(A)** acetic acid **(B)** t-butyl alcohol the unchanged ester **(D)** water (entirely)
- (CH₃), CO and OHCCH₂CHO **(A) (B)** OH OH

 $(CH_3)_2C = CHCH_2CHO$ on vigorous oxidation by a permanganate solution gives :

(D) The hydrolysis of an ester (A) gives an acid (B) and an alcohol (C). The acid (B) reduces Tollen's solution. Oxidation of the 13. alcohol (C) gives the acid (B). The ester (A) is:

(CH₃)₂CO and CH₂(COOH)₂

- **(A)** methyl formate (B) ethyl formate **(C)** methyl acetate **(D)** ethyl acetate
- In the reaction $CH_3COOH + X \xrightarrow{H_2SO_4} Y + CO_2 + N_2 \ (X)$ and (Y) are, respectively : 14. NH₃ and CH₃CONH₂ **(A) (B)** NH₃ and CH₃NH₂
 - **(C)** HN₃ and CH₃CONH₂ **(D)** HN₃ and CH₃NH₂
- 15. The conversion of acetophenone into benzoic acid can be achieved by reaction with:
 - sodium hydoxide followed by acidification **(A)**

(CH₃)₂CO and OHCCH₂COOH

- **(B)** iodine and sodium hydroxide, followed by acidification
- **(C)** hydroxylamine followed by reaction with H₂SO₄
- **(D)** m-chloroperoxobenzoic acid
- **16.** Consider the following sequence of reactions.

$$BaCO_3 + H_2SO_4 \longrightarrow X(gas); \qquad CH_2 = CHBr \xrightarrow{1. Mg, THF, heat} Y$$

$$3. H_3O^+$$

The product (Y) is:

- $CH_2 = CHCOOH$ (C) $CH_2CH = CHCOBr$ **(A)** CH₂=CHCHO **(B) (D)** HCOOCH=CH₂
- **17.** Consider the following sequence of reactions.

$$CH_3CH = CHCHO \xrightarrow{1. NaBH_4} A \xrightarrow{1. KCN} B$$

The end product (B) is:

- **(A)** CH₃CH₂CH₂COOH **(B)** CH₃CH(Cl)CH₂CH₂COOH
- CH₃CH=CHCH₂COOH $CH_3CH = CHCH_2CH_2NH_2$ **(C) (D)**

18. Consider the following sequence of reactions.

$$\begin{array}{c} & & & \text{O} \\ \text{A} \\ (\text{C}_4\text{H}_8\text{O}_3) & \xrightarrow{\text{CrO}_3} \text{B} & \xrightarrow{\text{warm}} \text{CH}_3 \text{CCH}_3 + \text{CO}_2 \end{array}$$

The compound (A) is:

(A) HOCH₂CH₂COOH

(B) CH₃CH(OH)CH₂COOH

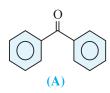
(C) CH₃CH₂CH(OH)COOH

- (D) (CH₃)₂C(OH)COOH
- 19. The leaving group ability of the following groups in a nucleophilic acyl substitution by a given nucleophile decreases in the order:
 - (A) $-NH_2 > -Cl > -OCOR > -OR$
- (B) $-C1 > -OCOR > -OR > -NH_2$
- (C) $-OCOR > -OR > -Cl > -NH_2$
- (D) $-OR > Cl > -NH_2 > -OCOR$
- **20.** Consider the following sequence of reactions.

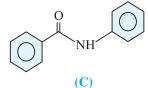
$$C_6H_5CH_2OH \xrightarrow{1.\,PBr_3} A \xrightarrow{H_2O_2} B \xrightarrow{\Delta} C$$

The end product (C) is:

(A) $C_6H_5CH_2COOH$


(B) $C_6H_5CH_2CN$

(C) $C_6H_5CH_2CONH_2$


- (D) $C_6H_5CH_2CHO$
- **21.** Consider the following reaction sequence.

$$\begin{array}{c}
\text{CN} \\
\hline
\begin{array}{c}
1. \text{ H}_3\text{O}^+, \text{ heat} \\
\hline
2. \text{ SOCl}_2
\end{array}
\begin{array}{c}
A \xrightarrow{\text{Benzene}} B
\end{array}$$

The structure of the product (B) is:

(B)

- Ethyl propionate is allowed to react with an excess of methylmagnesium iodide in dry ether and subsequently treated with dilute H_2SO_4 in the cold. Which of the following products is expected?
 - (A)
- \bigcirc
- **(B)**
- OH
- **(C)**
- \bigcirc OH
- **(D)**
- ∕∕_{OH}
- 23. The following reactions were carried out with compound (A) to give a compound (B).

$$\begin{array}{c} \text{COOC}_2\text{H}_5 \\ \text{CHO} \end{array} \xrightarrow{\begin{array}{c} 1. \text{ NaBH}_4 \\ \hline 2. \text{ H}_3\text{O}^+, \text{ heat} \end{array}} \text{B}$$

The structure of the product (B) is:

- (A)
- COOH CH,OH
- **(B)**
- CH₂O
- (C)
- COOC₂H₅ (D
- 0

24. An ester (A) undergoes self-condensation in the presence of C_2H_5ONa to give a β -keto ester (B) and ethanol. (B) on being heated with aqueous H_2SO_4 gives 3-pentanone. The ester (A) is :

CN

CN

(A) CH₃COOC₂H₅

(B) CH₃CH₂COOC₂H₅

(C) (CH₃)₂CHCOOC₂H₅

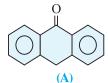
(D) CH₃CH₂CH₂COOCH₃

CO₂Et

- 25. The major product of the reaction given will be:
 - (A) Monocarboxylic acid
 - (B) Tricarboxylic acid
 - (C) Vicinal dicarboxylic acid
 - (D) Gem dicarboxylic acid
- **26.** Consider the following sequence of reactions.

$$PCl_5 + SO_2 \longrightarrow A + B$$

$$CH_3COOH + A \longrightarrow C + SO_2 + HCl$$


$$2C + (CH_3)_2 Cd \longrightarrow 2D + CdCl_2$$

The end product (D) is:

- (A) CH₃COCl
- (B) CH₃COOCH₃
- (C) CH₃COCH₃
- (D) (CH₃)₂CHCOCl

27. Consider the following sequence of reactions.

The end product (B) is:

(B)

CHO
CH₂C₆H₅

28. Consider the following sequence of reactions.

 $\begin{array}{c}
A \\
(C_{11}H_{14}O_2) \xrightarrow{2. H^+} B + CH_3CH_2COO^\end{array}$

 $\begin{array}{c} \text{COOH} \\ \text{B} \xrightarrow{\text{1. KMnO}_4/\text{OH}^-} \\ \hline \text{2. H}_3\text{O}^+ \end{array} \begin{array}{c} \text{COOH} \\ \end{array}$

The products (A) is:

$$(A) \qquad (B) \qquad (C) \qquad (D)$$

Illustration - 4 Identify A, B, C, ... in the given reaction sequence.

+ diethyl maleic ester
$$\xrightarrow{Heat}$$
 $A \xrightarrow{H_3O^+} B$

$$B \xrightarrow{1. NaOH} C \xrightarrow{1. O_3/Zn-H_2O} D$$

$$2. Heat in CaO \xrightarrow{1. O_3/Zn-H_2O} D$$

SOLUTION:

Illustration - 5 An organic compound (A) with C_2H_5OH gives compounds (B) and (C). On hydrolysis, (C) under acidic conditions gives (B) and (D). Oxidation of (D) with $KMnO_4$ also gives (B). (B) on heating with $Ca(OH)_2$ gives $E(C_3H_6O)$. E does not give Tollen's test or reduce Fehling solution but forms 2, 4 DNP derivative. Identify A, B, C, D and E.

SOLUTION:

$$\begin{array}{c} A + C_{2}H_{5}OH \longrightarrow (B) + (C) \\ (C) \stackrel{H_{3}O^{+}}{\longrightarrow} (B) + (D) \\ & \stackrel{L}{\stackrel{(O)}{\longrightarrow}} B \end{array} \qquad \begin{array}{c} B \stackrel{Ca(OH)_{2}}{\longrightarrow} E (C_{3}H_{6}O) \\ & \stackrel{Fehling}{\longrightarrow} No \ reaction \\ & \stackrel{Fehling}{\longrightarrow} No \ reaction \\ & \stackrel{Ca(OH)_{2}}{\longrightarrow} E \ is \ Ketone \end{array}$$

Calcium salt of B gives E on heating, hence B is CH₃COOH. Accordingly D will be CH₃CH₂OH. Clearly (C) is an ester.

$$C \text{ is } CH_3 - C - OC_2H_5 \xrightarrow{H_3O^+} CH_3 - C - OH + C_2H_5OH$$

$$C \text{ is } CH_3 - C - OC_2H_5 \xrightarrow{H_3O^+} CH_3 - C - OC_2H_5 \text{ Hence A is anhydride.}$$

$$C \text{ is } CH_3 - C \xrightarrow{C} O \xrightarrow{C_2H_5OH} CH_3 - C - OH + CH_3 - C - OC_2H_5$$

$$C \text{ is } CH_3 - C \xrightarrow{C} O \xrightarrow{C_2H_5OH} CH_3 - C - OH + CH_3 - C - OC_2H_5$$

Illustration - 6 An organic compound (A) $C_8H_4O_3$ (in dry benzene) in the presence of anhydrous $AlCl_3$ gives a compound (B). The compound (B) on treatment with PCl_5 , following by reaction with H_2 - $Pd/BaSO_4$ gives compound (C). The compound (C) on reaction with NH_2NH_2 gives a cyclic compound (D), $C_{14}H_{10}N_2$. Identify A, B, C, D. Also explain formation of D from C.

SOLUTION:

$$\begin{array}{c}
A \\
(C_8H_4O_3)
\end{array} +
\begin{array}{c}
& \text{anhy. AlCl}_3 \\
& \end{array} \rightarrow B$$

The above reaction is certainly Friedal Craft acylation. The compound (A) can be anhydride (as it contains three oxygen atoms). Also observe that the formula of A suggest a benzene ring.

A will certainly be:

$$\begin{array}{c}
0 \\
C \\
0
\end{array}$$

$$\begin{array}{c}
B & \frac{1 \cdot PCl_5}{2 \cdot H_2 \cdot Pd/BaSO_4} \cdot C
\end{array}$$

$$\begin{array}{c}
C \\
C \\
C \\
C \\
C \\
C
\end{array}$$

$$\begin{array}{c}
C \\
C \\
C \\
C \\
C
\end{array}$$

$$\begin{array}{c}
C \\
C \\
C \\
C
\end{array}$$

$$\begin{array}{c}
C \\
C \\
C \\
C
\end{array}$$

$$\begin{array}{c}
C \\
C \\
C \\
C
\end{array}$$

$$\begin{array}{c}
C \\
C
\end{array}$$

$$C$$

(cyclic imine)

Illustration - 7 *Identify the product(s) formed in each of the following reactions and explain their formation.*

$$\begin{array}{ccc}
O \\
O \\
OH
\end{array}$$

$$\begin{array}{ccc}
CH_3 \\
OH
\end{array}$$

$$\begin{array}{ccc}
H_3O^+ \\
OH
\end{array}$$

$$\begin{array}{ccc}
CH_3CHO \\
H^+
\end{array}$$

SOLUTION:

Illustration - 8 *Identify the compounds A, B, C, D, E and F, is the following reaction sequence.*

EtO COOEt
$$\xrightarrow{HCl/H_2O}$$
 $A + B \xrightarrow{\Delta} C$

$$C \xrightarrow{NaBH_4} D$$

$$C \xrightarrow{H_2O} D$$

$$LiAlH_4/ether \\ H O E \xrightarrow{A} F (major)$$

SOLUTION:

Observe that gem diether (acetal) will be hydrolysed to give carbonyl group.

Malonic acid derivative will undergo decarboxylation to give mono-carboxylic acid on heating.

EtO COOEt
$$\frac{\text{HCI/H}_2\text{O}}{\text{COOH}}$$
 O COOH $\frac{\Delta}{\text{COOH}}$ O COOH

C

Illustration - 9 Identify all the possible products in the following reaction sequence.

$$\begin{array}{c|c}
O & O \\
\hline
O & H_3O^{+}/\Delta \\
\hline
O & 2. H_2O
\end{array}$$

$$\begin{array}{c}
A + B \\
\hline
O & A
\end{array}$$
Products.

SOLUTION:

Illustration - 10 An organic compound (A), $C_5H_{10}O_2$ reacts with Br_2 is presence of phosphorus to give (B). The compound (B) contains an assymetric carbon atom and yields (C) on debromination. The compound (C) does not show geometric isomerism and on decarboxylation with sodalime gives an alkene (D) which on reductive ozonolysis gives compounds (E) and (F). The compounds (E) and (F) on heating in alkali gives a compound (G). Identify the compounds (A) to (G).

SOLUTION:

$$A(C_5H_{10}O_2) \xrightarrow{Br_2} (B) \xrightarrow[\text{having a symetric carbon atom}]{-HBr} \xrightarrow[\text{no geometric isomerism}]{-CO_2} \xrightarrow[\text{Alkene}]{-CO_2} Alkene \xrightarrow[\text{O}]{O_3} E+F \cdot (E+F \xrightarrow{OH} \Delta) G)$$

(A) has to be an acid (with α -H) undergoing HVZ reaction to give (B), an optically active compound. So B can have two possible structures :

Since debromination gives an alkene showing no geometric isomers, it means (B) will be the branched one.

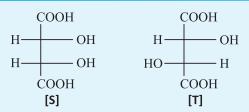
The structure of (A) will be clearly : CH_3 CHCH₂COOH

$$\begin{array}{c|c}
CH_3 & H \\
CH_3 & CH - C - COOH \\
\hline
CH_3 & CH_3
\end{array}$$

$$\begin{array}{c}
CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c}
CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c}
CH - COOH \\
CH_3
\end{array}$$


$$\begin{array}{c}
(C)
\end{array}$$

$$CH_3$$
 $C = CH - COOH$ CH_3 $C = CH_2$ CH_3 $C = CH_3$ CH_3 $C = O + HCHO$ CH_3 CH_3 $C = O + HCHO$

Visualise cross-aldol condensation between acetone and formaldehyde.

$$CH_3$$
 $C = O + HCHO$ $OH^ CH_3$ CH_3 CH_3

Illustration - 11 P and Q are isomeric dicarboxylic acid $C_4H_4O_4$. Both decolorize Br_2/H_2O . On heating, P forms a cyclic anhydride. Upon treatment with dilute alkaline $KMnO_4$. P as well as Q could produce one or more than one from compounds S, T and U given:

Choose the correct option for I and II:

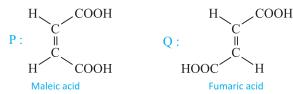
- I. Compounds formed from P and Q are, respectively:
 - (A) Optically active S and optically active pair (T, U)
 - (B) Optically inactive S and optically inactive pair (T, U)
 - (C) Optically active pair (T, U) and optically active S
 - (D) Optically inactive pair (T, U) and optically inactive S

СООН НО Н Н ОН СООН [U]

II. In the following reaction sequences V and W are, respectively:

$$Q \xrightarrow{\text{H}_2 / \text{Ni}} V ; V + \underbrace{\begin{array}{c} \text{AlCl}_3 \\ \text{anhydrous} \end{array}} \xrightarrow{\text{1. Zn - Hg/HCl}} W$$

(A)
$$V: \bigcup_{O} \text{ and } W: \bigcup_{O} \text{ on }$$


$$V: \begin{bmatrix} CH_2OH \\ CH_2OH \end{bmatrix} \text{ and } W: \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

$$V:$$
 $V:$ CH_2OH and $W:$ CH_2OH

SOLUTION:

L(B) P and Q are certainly unsaturated dicarboxylic acids $(C_4H_4O_4)$: Maleic and Fumaric acids P must be maleic acid (*cis* form) as it forms anhydride on heating, hence Q is obviously fumaric acid (*trans* form).

(D)

Visualise $syn\ hydroxylation$ (addition) by dilute alkaline $KMnO_4$ in cis and trans alkenes.

$$P(cis) + dil. KMnO_4 \xrightarrow{syn} Meso products (S)$$

$$Q(trans) + dil.KMnO_4 \xrightarrow{syn} Racemic mixture (T + U)$$

Visualise intra-molecular F.C. acylation

II.(A)

$$\begin{array}{c} \text{H} \\ \text{COOH} \\ \text{H} \\ \text{HOOC} \\ \text{H} \\ \text{HOOC} \\ \text{H} \\ \text{HOOC} \\ \text{H} \\ \text{O} \\ \text{AlCl}_3 \\ \text{anhydrous} \\ \text{HO} \\ \text{O} \\ \text{HO} \\ \text{O} \\ \text{HO} \\ \text{O} \\ \text{HO} \\ \text{O} \\ \text$$

Illustration - 12 *Identify A, B, C in the following reaction sequence.*

Visualise inter-molecular F.C. acylation

$$\begin{array}{c}
COOEt \\
COOEt
\end{array}
\xrightarrow{H_3O^+}
\xrightarrow{\Delta}
A \xrightarrow{1. \text{ EtONa} \atop 2. \text{ CH}_2 - \text{ COOEt}}
Br
Br
Br

1. NaBH_4/H_2O
2. H_3O^+
3. H^+
COOEt$$

SOLUTION:

COOH
$$\xrightarrow{\Delta}$$
 COOH $\xrightarrow{\Delta}$ COOH $\xrightarrow{\Delta}$ COOH $\xrightarrow{\Delta}$ COOH $\xrightarrow{\Delta}$ COOH $\xrightarrow{\Delta}$ COOH $\xrightarrow{\Delta}$ COOH \xrightarrow{A} CH₂COOE OH \xrightarrow{A} COOH $\xrightarrow{A$

ANSWERS TO IN-CHAPTER EXERCISES 1. C **2.** ABD **3.** B **4.** B **5.** A **6.** B **7.** B **8.** A **9.** ABC **10.** A **11.** B **12.** D **14.** D **15.** B **17.** C **18.** B **19.** B **20.** B **13.** A **16.** B **21.** A **22.** D **23.** D **24.** B **25.** C **26.** C **27.** B **28.** B